Effects of persister formation on bacterial response to dosing.
نویسنده
چکیده
Almost all moist surfaces are colonized by microbial biofilms. Biofilms are implicated in cross-contamination of food products, biofouling and various human infections such as dental cavities, ulcerative colitis and chronic respiratory infections. The recalcitrance of biofilms to typical antibiotic and antimicrobial treatments is one focus of current investigations. Neither reaction-diffusion limitation nor heterogeneities in growth-rate explain the observed tolerance. Another hypothesis is that specialized 'persister' cells, which are extremely tolerant of antimicrobials, are the source of resistance. In this investigation, we describe the formation of 'persister' cells which neither grow nor die in the presence of antibiotics. We propose that these cells are of a different phenotype whose expression is regulated by the growth rate and the antibiotic concentration. Based on several experiments describing the dynamics of persister cells, we introduce a mathematical model that is used to describes the effect of a periodic dosing regiment. Results from our analysis indicate that the relative dose/withdrawal times are important in determining the effectiveness of such a treatment. A reduced model is also introduced and the similar behavior is demonstrated analytically.
منابع مشابه
Persister cells formation and expression of type II Toxin-Antitoxin system genes in Brucella melitensis (16M) and Brucella abortus (B19)
Background & Objective: Persister cells are defined as a subpopulation of bacteria that are capable of reducing their metabolism and switching to dormancy in stress conditions. Persister cells formation has been attributed to numerous mechanisms, including stringent response and Toxin-Antitoxin (TA) systems. This study aimed to investigate the hypothetical role of TA systems in...
متن کاملIncorporating toxin hypothesis into a mathematical model of persister formation and dynamics.
Biofilms are well known for their extreme tolerance to antibiotics. Recent experimental evidence has indicated the existence of a small fraction of specialized persister cells may be responsible for this tolerance. Although persister cells seem to exist in planktonic bacterial populations, within a biofilm the additional protection offered by the polymeric matrix allows persister cells to evade...
متن کاملBacterial persister cell formation and dormancy.
Bacterial cells may escape the effects of antibiotics without undergoing genetic change; these cells are known as persisters. Unlike resistant cells that grow in the presence of antibiotics, persister cells do not grow in the presence of antibiotics. These persister cells are a small fraction of exponentially growing cells (due to carryover from the inoculum) but become a significant fraction i...
متن کاملArchaeal Persisters: Persister Cell Formation as a Stress Response in Haloferax volcanii
Persister cells are phenotypic variants within a microbial population, which are dormant and transiently tolerant to stress. Persistence has been studied extensively in bacteria, and in eukaryotes to a limited extent, however, it has never been observed in archaea. Using the model haloarchaeon, Haloferax volcanii DS2, we demonstrated persister cell formation in this domain, with time-kill curve...
متن کاملPseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules.
Bacterial persister cells constitute a small portion of a culture which is tolerant to killing by lethal doses of bactericidal antibiotics. These phenotypic variants are formed in numerous bacterial species, including those with clinical relevance like the opportunistic pathogen Pseudomonas aeruginosa. Although persisters are believed to contribute to difficulties in the treatment of many infec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 238 3 شماره
صفحات -
تاریخ انتشار 2006